

Whatever is in Y Indy
beautiful batl its source of

beasty i itself. aid is
comnplete in itself; praise
Jorms e part of it.

.]’ N
— Marcus Aurelits Antonings

There is _u);m'rf;i."ug i fece,
An air, and a pecrdiar grace,
Which boldest painiers
COnot frice.

ilam Somerville

Cato said the best way to
fecep good acts in memory
wets te refrosh thew with
et

Feancis Bacon

{ wever forger o fave, but in
youur cose 1 wiake an
exXCeption.

s sreticho Mary

Pfﬂi![[iif{ s r?i}!:}f] /ii'l}?f{{t'

linking the painter’s mind
with that of the vicwer.

=-Fugéne 1]

Ajax-Enabled JavaServer™ Faces Web Applications 1153

27.1 Introduction

This chapter continues our discussion of web application development with several adv-
anced concepts. We discuss accessing, updating and searching databases in a web appli-
cation, adding virtual forms to web pages to enable subsets of a form’s input components
to be submitted to the server, and using Ajax-enabled component libraries to improve app-
lication performance and component responsiveness. {Note: This chapter assumes that
you know Java. To learn more about Java, check out Java How to Program, Seventh Edition,
or visit our Java Resource Centers at www. deitel. com/RescurceCenters.html.]

We present a single address book application developed in three stages to illustrate
these concepts. The application is backed by a Java DB database for storing the contact
names and their addresses.

‘The address book application presents a form that allows the user to enter a new name
and address to store in the address book and displays the contents of the address book in
table format. It also provides a search form that allows the user to search for a contact and,
if found, display the contact’s address on a map. The fisst version of this application dem-
onstrates how to add contacts to the darabase and how to display the list of contacts in a
JSF Table component. In the second version, we add an Ajax-enabled AutoComplete Text
Field component and enable it to suggest a list of contact names as the user types. The last
version allows you to search the address book for a contact and display the corresponding
address on a map using the Ajax-enabled Map Viewer component that is powered by
Google Maps (maps .google. com).

As in Chapter 26, this chapter’s examples were developed in Netbeans. We installed
a supplementary component library—the Java BluePrints Ajax component library—
which provides the Ajax-enabled components used in the address book application.

1154 Internet & World Wide Web How to program

Instructions for installing this library are included in Section 27.3. These Ajax-enabled
components use the Dojo Toolkit (which we introduced in Chapter 15) on the client side.

27.2 Accessing Databases in Web Applications

Many web applications access databases to store and retrieve persistent data. In this sec-
tion, we build a web application that uses a Java DB database to store contacts in the add-
ress book and display contacts from the address book on a web page.

The web page enables the user to enter new contacts in a form. This form consists of
Text Field components for the contact’s first name, last name, street address, city, state and
zip code. The form also has a Submit button to send the data to the server and a Clear
button to reset the form’s fields. The application stores the address book information in a
database named AddressBook, which has a single table named Addresses. (We provide
this database in the examples directory for this chapter. You can download the examples
from www.deitel.com/books/iw3htp4/). This example also introduces the Table JSF
component, which displays the addresses from the database in tabular format. We show
how to configure the Table component shortly.

27.2.1 Building a Web Application That Displays Data from a Database

We now explain how to build the AddressBook application’s GUI and set up a dara bind-
ing that allows the Table component to display information from the database. We present
the generated JSP file later in the section, and we discuss the related page bean file in
Section 27.2.2. To build the Address8ook application, perform the following steps:

Step 1: Creating the Project
In Netbeans, create a Visual Web Application project named AddressBook. Rename the JSP
and page bean files to AddressBook using the refactoring tools.

Step 2: Creating the Form for User Input

In Design mode, add a Static Text component to the top of the page that reads "Add a con-
tact to the address book:" and use the component’s style property to set the fonr size
to 18px. Add six Text Field components to the page and rename them fnameTextField,
TnameTextField, streetTextField, cityTextField, stateTextField and zipText-
Field. Set each Text Field's required property to true by selecting the Text Field, then
clicking the required property’s checkbox. Label each Text Field with a Label component
and associate the Label with its corresponding Text Fiald. Finally, add a Submit and a Clear
button. Ser the Submit button’s primary property to true to make it stand out more on
the page than the Clear button and to allow the user to submit a new contact by pressing
Enter rather than by clicking the Submit button. Set the Clear button’s reset property to
true to prevent validation when the user clicks the Clear button. Since we are clearing the
fields, we don’t need to ensure that they contain information. We discuss the action han-
dler for the Submit button after we present the page bean file. The Clear button does not
need an action-handler method, because setting the reset property to true automatically -
configures the button to reset all of the page’s input fields. When you have finished these
steps, your form should leok like Fig. 27.1.

Ajax-Enabled JavaServer™ Faces Web Applications 1155

Add @ conlect 1o the address book:

Fig. 27.1 | AddressBook application form for adding a contact.

Step 3: Adding a Table Component to the Page

Drag a Table component from the Basic section of the Palette to the page and place it just
below the two Button components. Name it addressesTable. The Table component for-
mats and displays data from database tables. In the Properties window, change the Table’s
title property to Contacts. We show how to configure the Table to interact with the
AddressBook database shortly.

Step 4: Creating a Java DB Database
This example uses a database called AddressBock to store the address information. To cre-
ate this database, perform the following steps:

1. Select Tools » Java DB Database > Create Java DB Database....

2. Enter the name of the database to create (AddressBook), a username (iw3htp4}
and a password (iw3htp4), then click OK to create the database.

In the Netbeans Runtime tab (to the right of the Projects and Files tabs), the preceding
steps create a new entry in the Databases node showing the URL of the database
{jdbc:derby://localhost:1527/AddressBook), This URL indicates that the database
resides on the local machine and accepts connections on port 1527.

Step 5: Adding a Table and Data to the AddressBook Database
You can use the Runtime tab to create tables and to execute SQL statements that populate
the database with data:

1. Click the Runtime tab and expand the Databases node.

2, Netbeans must be connected to the database to execute SQL statements. If Net-
beans is already connected, proceed to Szep 3. If Netbeans is not connected to the
database, the icon B§ appears next to the database’s URL (jdbc:derby://
localhost:1527/AddressBook). In this case, right click the icon and click Con-
nect.... Once connected, the icon changes to . -]

3. Expand the node for the AddressBook database, right click the Tables node and
select Execute Command... to open a SQL Command editor in Netbeans. We pro-
vided the file AddressBook. sq1 in this chapter’s examples folder. Open that file
in a text editor, copy the SQL statements and paste them into the SQL Command
editor in Netbeans. Then, highlight all the SQL commands, right click inside the
SQI. Command editor and select Run Selection. This will create the Addresses
table with the sample data shown in Fig. 27.2. You may need to refresh the
Tables node of the Runtime tab to see the new table.

1156 Internet & World Wide Web How te program

Fig. 27.2 | Addresses table data.

Step 6: Binding the Table Component to the Addresses Table of the AddressBook
Database

Now that we've configured a data source for the Addresses database table, we can configure
the Table component to display the AddressBook data. Simply drag the database table from
the Servers tab and drop it on the Table component to create the binding.

To select specific columns to display, right click the Table component and select Bind
to Data to display the Bind to Data dialog containing the list of the columns in the
Addresses database table (Fig. 27.3). The items under the Selected heading will be dis-
played in the Table. To remove a column, select it and click the < button. We'd like to
display all the columns in this example, so you should simply click OK to exit the dialog.

By default, the Table uses the database table’s column names in all uppercase letters as
headings. To change these headings, select a column and edit its headerText property in
the Properties window. To select a column, click the column’s name in the Design mode.
We also changed the id property of each column to make the variable names in the code
more readable. In Design mode, your Table’s column heads should appear as in Fig. 27.4.

Fig. 27.3 | Dialog for binding to the Addresses table.

Ajax-Enabled JavaServer™ Faces Web Applications 1157

. qv,ai;mm- ok [-ao;:.;:ta;.; P

Tmbe

Fig. 27.4 | Table component after binding it to a database table and editing its column
names for display purposes.

An address book might contain many contacts, so we'd like to display only a few ata
time. Clicking the checkbox next to the table’s paginationControls property in the Prop-
erties window configures this Table for automatic pagination. This adds buttons to the
bottom of the Table for moving forward and backward between groups of contacts. You
may use the Table Layout dialog’s Options tab to select the number of rows to display at 2
time. To view this tab, right click the Table, select Table Layout..., then click the Options
tab. For this example, we set the Page Size property to 5.

Next, set the addressesTable’s internalVirtualForm property. Virtual forms allow
subsets of a form’s input components to be submitted to the server. Setting this property
prevents the pagination control buttons on the Table from submitting the Text Fields on
the form every time the user wishes to view the next group of contacts. Virtual forms are
discussed in Section 27.4.1.

Binding the Table to a data provider added a new addressesDataProvider object (an
instance of class CachedRowSetDataProvider) to the AddressBook node in the Outfine
window. A CachedRowSetDataProvider provides a scrollable RowSet that can be bound to
a Table component to display the RowSet’s data. This data provider is a wrapper for a
CachedRowSet object. If you click the addressesDataProvider element in the Outine
window, you'll see in the Properties window that its CachedRowSet property is set to
addressesRowSet, an object (in the session bean) that implements interface CachedRowSet,

Step 7: Modifying addressesRowSet’s SQL Statement

The CachedRowSet object wrapped by our addressesDataProvider is configured by def-
ault to execute a SQL query that selects all the data in the Addresses table of the Add-
ressBook database. You can edit this SQL query by expanding the SessionBean node in
the Outiine window and double clicking the addressesRowSet element to open the query
editor window (Fig. 27.5). We'd like to edit the SQL statement so that records with dup-
licate last names are sorted by last name, then by first name. To do this, click in the Sort
Type column next to the LASTNAME row and select Ascending. Then, repeat this for the
FIRSTNAME row. Notice that the expression

ORDER BY IW3HTP4.ADDRESSES.LASTNAME ASC,
IW3HTP4.ADDRESSES . FIRSTNAME - ASC

was added to the SQL statement at the bottom of the ediror.

Step 8: Adding Validation ‘

It is important to validate the form data on this page to ensure that the data can be suc-
cessfully inserted into the AddressBook database. All of the database’s columns are of type
varchar (except the ID column) and have length restrictions. For this reason, you should

1158 Internet & World Wide Web How to program

JWITP4 ADDRESSES, FIRSTNAME ASC

Fig. 27.5 | Editing addressesRowSet's SQL statement.

either add a Length Validator to each Text Field component or set each Text Fleld compo-
nent’s maxLength property. We chose to set the maxLength property of each. The first
name, last name, street, city, state and zip code Text Field components may not exceed 30,
30, 150, 30, 2 and 5 characters, respectively.

Finally, drag 2 Message Group component onto your page to the right of the Text
Fields. A Message Group component displays system messages. We use this component to
display an error message when an attempt to add a contact to the database fails. Set the
Message Group’s showGlobalOnly property to true to prevent component-level valida-
tion error messages from being displayed here.

JSP File for a Web Page That Interacts with a Database

The JSP file for the application is shown in Fig. 27.6. This file contains a large amount of
generated markup for components you learned in Chapter 26. We discuss the markup for
only the components that are new in this example.

Fig. 27.6 | AddressBook JSP with an add form and a Table JSF component (Part-l of 5

Ajax-Enabled JavaServer™ Faces Web Applications 1159

Fig. 27.6 | AddressBook JSP with an add form and a Table JSF component (Part 2 of 5.)

1160 Internet & World Wide Web How to program

Fig. 27.6 | AddressBookJSP wn‘.h an add forrn and a TabIeJSF component (Part 3 of 5.)

Ajax-Enabled JavaServer™ Faces Web Applications 1161

sort="ADDRESSES. STAT‘E"
sf istaricText bmdmg-

Columni™ héader"fe, "Zip’
50 t="ADDRESSES ZIp" Wl hat

ext bindings=.
stat1cText7}"

erget Laplones

e ﬁ"

Add a contact to the address book:

Fira narme: ™ Jkmansa Last name: *

Street:* i1 Faneutbini Sa. -
P gty T e g

[Mx%j s I . £

1000 Wichigan Ave.
1000 Harboe Ave. L
3606 Dear Bid St ious o 83108
1200 St ¢ Derver L 204
500 South Bt

Joore L o)) . » T ‘jwcaimnt B 100% -

R T AR

Fig. 27.6 | AddressBook jSP wnth an add form and 3 TabIaJSF component (Part 40ofs)

1162 Internet & World Wide Web How to program

Fig. 27.6 | AddressBook JSP with an add form and a Table |SF component {Part 5 of 5.)

Lines 21-75 contain the JSF components for the form that gathers user input. Lines
80-138 define the Table clement (webuijsf:table) that displays address information
from the databasc. JSF Tables may have mulriple groups of rows displaying different dara.
This Table has a single webui jsf: tableRowGroup with a start tag in lines 85-89. The row
group’s sourceData attribute is bound to our addressesDataProvider and given the
variable name currentRow. The row group also defines the Table’s columns. Each
webuijsf:tableColumn element (e.g., lines 90-98) contains a webuijsf:staticText ele-
ment with its text attribute bound to a column in the data provider currentRow. These
webuijsf:staticText elements enable the Table to display each row’s data.

Session Bean for the AddressBook Application

Figure 27.7 displays the SessionBeanl.java file generated by Netbeans for the Address-
Book application. The CachedRowSet that the Table component’s data provider uses to
access the AddressBook database is a property of this class (lines 31-41).

- 3

Fig. 27.7 | Session Bean that initializes the data source for the AddressBook database. {Part |
of 2.)

Ajax-Enabled JavaServer™ Faces Web Applications 1163

Fig. 27.7 | Session Bean that initializes the data source for the AddressBoak database. (Part 2
of 2.} :

The _init method (lines 14-29) configures addressesRowSet to interact with the
AddressBook database (lines 16-28). Lines 16~17 connect the row set to the database.
Lines 18-27 set addressesRowSet’s SQL command to the query configured in Fig, 27.5.
Line 28 sets the RowSet’s table name.,

27.2.2 Modifying the Page Bean File for the AddressBook Application

After building the web page and configuring the components used in this example, double
click the Submit burton to create an action event handler for this button in the page bean
file. The code to insert a contact into the database will be placed in this method. The page
bean with the completed event handler is shown in Fig. 27.8 below.

1164 Internet & World Wide Web How to program

§ addressesDataProv1der refresh(),
‘/f%end methodzgrerendgr

//:To. save space; wé.omitted the code-in. lines 516-530.
/7 source codg_fsupfpvid d with this chapt r's examples.

Fig. 27.8 | Page bean for adding a contact to the address book. (Part | of 2.)

Ajax-Enabled JavaServer™ Faces Web Applications 1165

RowKey rk =-addressesDataProvider.appendRow();
ddressesDataProvider.set{ursorRow(rk.J;

ddressesDatameder setVa?ue("ADDRESSES FIRSTNAME"
frameTextField.getvValue() };
ddressesDataProvidér. setValue("Amssas anwae ‘

- IriameTextField, getvaiued)); .

addressesDataProvider.setValue(. “ADIJRESSES STREET“

. - streetTextField. getvValue());
ddrassesDataProvider. setValue("ADDRESSES CITY"
CcityTextField.getvalue()-D; . o w0 . -0
dressesDataProvider -setVatue(‘ADBREG?SES."S?A?‘E": 5
wistateTextField,getValue®) i - i
di ressesﬂa‘Ean‘ov_ﬁer setValue(“ADDRESSES ZIP"

Fig. 27.8 | Page bean for adding a contact to the address book. (Part 2 of 2)

Lines 533-572 contain the event-handling code for the Submit button. Line 535
determines whether a new row can be appended to the data provider. If so, a new row is
appended at line 539. Every row in a CachedRowSetDataProvider has its own key;
method appendRow returns the key for the new row. Line 540 sets the data provider’s
cursor to the new row, so that any changes we make to the data provider affect that row.
Lines 542-553 set each of the row’s columns to the values entered by the user in the

1166 Internet & World Wide Web How to program

corresponding Text Fields. Line 554 stores the new contact by calling method commi tChanges
of class CachedRowSetDataProvider to insert the new row into the AddressBeok database.

Lines 557-562 clear the form’s Text Fields. If these lines are omitted, the fields will
retain their current values after the database is updated and the page reloads. Also, the
Clear button will not work properly if the Text Fields are not cleared. Rather than emptying
the Text Fields, it resets them to the values they held the last time the form was submitted.

Lines 564-568 catch any exceptions that might occur while updating the Address-
Book database. Lines 566-567 display a message indicating that the database was not
updated as well as the exception’s error message in the page’s MessageGroup component,

In method prerender, line 508 calis CachedRowSetDataProvider method refresh.
This re-executes the wrapped CachedRowSet’s SQL statement and re-sorts the Table’s rows
so that the new row is displayed in the proper order. If you do not call refresh, the new
address is displayed at the end of the Table (since we appended the new row to the end of
the data provider). The IDE automatically generated code to free resources used by the
data provider (line 513) in the destroy method.

27.3 Ajax-Enabled JSF Components

The Java BluePrints Aja. .omponent library provides Ajax-enabled JSF components.
These components rely on Ajax technology to deliver the feel and responsiveness of a desk-
top application over the web. Figure 27.9 summarizes the current set of components that
you can download and use with Netbeans. We demonstrate the AutoComplete Text Field
and Map Viewer components in the next two sections.

4

Fig. 27.9 | Java BluePrints component library’s Ajax-enabled components.

Ajax-Enabled JavaServer™ Faces Web Applications 1167

Downloading the Java BluePrints Ajax-Enabled Components

To use the Java BluePrints Ajax-enabled components in Netbeans, you must download
and import them. The IDE provides a wizard for installing this group of components (Int-
ernet access is required). To access it, choose Tools > Update Center to display the Update
Center Wizard dialog. Click Next > to search for available updates. In the Available Updates
and New Modules area of the dialog, locate and select BlusPrints AJAX Components then
click the Add > button to add them to the list of items you’d like to install. Click Next >
and follow the prompts to accept the terms of use and download the components. When
the download completes, click Next » then click Finish. Click OK to restart the IDE.

Importing the Java BluePrints Ajax-Enabled Components into the Netbeans Palette
Next, you must import the components into the Palette. Select Tools > Gomponent Library
Manager, then click Import.... Click Browse... in the Component Library Manager dialog
that appears. Select the ui . comp11b file and click Open. Click OK to import both the Blus-
Prints AJAX Components and the BluePrints AJAX Support Beans. Close the Component Lib-
rary Manager to return to the IDE.

To see the new components in the Palette, you must add the BluePrints AJAX Com-
ponents library to your visual web application. To do so, make sure your application’s
node is expanded in the Projects tab. Right click the Component Libraries node and select
Add Component Library. In the Add Component Library dialog box, sefect the BluePrints
AJAX Components library and click Add Component Library. You should now see two new
nodes in the Palette. The first, BluePrints AJAX Components, provides the eight compo-
nents listed in Fig. 27.9. The second, BiuePrints AJAX Support Beans, includes compo-
nents that support the Ajax components. You can now build high-performance Ajax web
applications by dragging, dropping and configuring the component’s properties, just as
you do with other components in the Palette.

27.4 AutoComplete Text Field and Virtual Forms

We demonstrate the AutoComplete Text Field component from the BluePrints caralog by
modifying thé form in our AddressBook application, The AutoComplete Text Field pro-
vides a list of suggestions as the user types. It obtains the suggestions from a data source,
such as a database or web service. Eventually, the new form will allow users to search the
address book by last name, then first name. If the user selects a contact, the application
will display the contact’s name and address on 2 map of the neighborhood. We build this
form in two stages. First, we'll add the AutoComplete Text Fleld that will display sugges-
tions as the user types a contact’s last name. Then we'll add the search functionality and
map display in the next step.

Adding Search Components to the AddressBook. jsp Page

Using the AddressBook application from Section 27.2, drop a Static Text component
named searchHeader below addressesTable. Change its text to "Search the address
book by Tast name:" and change its font size to 18px. Now drag an AutoComplete Text
Field component to the page and name it nameAutoComplete. Set this field’s required
property to true. Add a Label named nameSearchLabel containing the text "Last name: "
to the left of the AutoComplete Text Field. Finally, add a button called tookUpButton with
the text Look Up to the right of the AutoComplete Text Field.

1168 Internet & World Wide Web How to program

27.4.1 Configuring Virtual Forms

Virtual forms are used when you would like a button ro submir a subset of the page’s input
fields to the server. Recall that the Table’s internal virtual forms were enabled so that click-
ing the pagination buttons would not submit any of the data in the Text Fields used to add
a contact to the AddressBook database. Virtual forms are particularly useful for displaying
multiple forms on the same page. They allow you to specify a submitter component and
one or more participant components for a form. When the virtual form’s submitter com-
ponent is clicked, only the values of its participant components will be submitted to the
server. We use virtual forms in our AddressBook application to separate the form for add-
ing a contact to the AddressBook database from the form for searching the database.

To add virtual forms to the page, right click the Submit button on the upper form and
choose Configure Virtual Forms... from the popup menu to display the Configure Virtual
Forms dialog. Click New to add a virtual form, then click in the Name column and change
the new form’s name to addForm. Double click the Submit column and change the option
to Yes to indicate that this button should be used to submit the addForm virtual form.
Click OK to exit the dialog. Next, select all the Text Fields used to enter a contact’s infor-
mation in the upper form. You can do this by holding the C#f key while you click each
Text Field. Right click one of the selected Text Fields and choose Configure Virtual Forms.....
In the Particlpate column of the addForm, change the option to Yes to indicate that the
values in these Text Flolds should be submitted to the server when the form is submitted.
Click OK to exit.

Repeat the process described above to create a second virtual form named searchForm
for the lower form. Figure 27.10 shows the Configure Virtual Forms dialog after both virtual
forms have been added. The Look Up Button should submit the searchForm, and name
AutoComplete should participate in the searchForm. Next, return to Design mode and click
the Show Virtual Forms button (&) at the top of the Visual Designer panel to display a
legend of the virtual forms on the page. Your virtual forms should be configured as in
Fig. 27.11. The Text Fields outlined in blue participate in the virtual form addForm. Those
outlined in green participate in the virual form searchForm. The components outlined
with a dashed line submit their respective forms. A color key is provided at the botrom
right of the Design area so that you know which components belong to each virtual form.

Fig. 27.10 | Configure Virtual Forms dialog.

Ajax-Enabled javaServer™ Faces Web Applications 1169

Add a contac! {0 the address book:

st
cup*

Tt

Search the address book by st n

27.4.2 JSP File with Virtual Forms and an AutoComplete Text Field

Figure 27.12 presents the JSP file generated by Netbeans for this stage of the AddressBook
application. A new tag library is specified in the root element (xmIns:bp="http://
java.sun.com/blueprints/ui/14"; line 5). This is the BluePrints catalog library that
provides Ajax-enabled components such as the AutoComplete Text Field component. We
focus only on the new features of this JSP.

Lines 2225 configure the vircual forms for this page. Lines 147-151 define the Auto-
Complete Text Field component. This component’s comp)etionMethod artribute is bound
to the page bean’s nameAutoComplete_complete method (discussed in Section 27.4.3),
which provides the list of options the AutoComplete Text Field component should suggest.
To create this method, right click the nameAutoComplete component in Design view and
select Edit Event Handler > complete. Notice that the Look Up button (lines 155-157) does *
not specify an action-handler method binding; we'll add this in Section 27.5.

Fig. 27.12 | AddressBook JSP with an AutoComplete Text Field component. (Part | of 5.)

170 Internet & World Wide Web How to program

yatEorm
fnameT, .]
stateTextField |- submitB
nameAut eLe U

Fig. 27.12 | AddressBook JSP with an AutoComplete Text Field component. (Part 2 of 5.)

Ajax-Enabled javaServer™ Faces Web Applications 1171

Fig. 27.12 | AddressBook JSP with an AutoComplete Text Field component. (Part 3 of 5.}

172 Internet & World Wide Web How to program

comp!»etwnﬂethods

"#{AddressBook. nameAutoCom? ete_compT etel"

ﬁ-"namekuto&mﬂete” sl
eft

osition: absolute"/>

Flg 27.12 | AddressBook JSP with an AutoCompiete Text Field component. (Part 4 of 5.)

Ajax-Enabled JavaServer™ Faces Web Applications 1173

Saarch the addrass book by iast name:

instname: 10

Cold, Wy
Giwy. John
Giestt, B0
Graan, Ly

R

Fig. 27.12 | AddressBook JSP with an AutoComplete Text Field component. (Part 5 of 5.)

27.4.3 Providing Suggestions for an AutoComplete Text Field

Figure 27.13 displays the page bean file for the JSP in Fig. 27.12. It includes the method-
nameAutoComplete_complete, which provides the functionality for the AutoComplete
Text Field. Otherwise, this page bean is identical to the one in Fig. 27.8.

3 0

Fig. 27.13 | Page bean that suggests names in the AutoComplete Text Field. {Part | of 3.)

ekl

174 Internet & World Wide Web How to program

ve ‘space, we omitted the code
e . e

ith

Fig. 27.13 | Page bean that suggests names in the AutoComplete Text Field. (Part 2 of 3.)
w

Ajax-Enabled JavaServer™ Faces Web Applications 1175

“addressesDataProvi

Fig. 27.13 | Page bean that suggests names in the AutoComplete Text Field. {Part 3 of 3.)

Method nameAutoComplete_complete (lines 629-669) is invoked after every key-
stroke in the AutoComplete Text Field to update the list of suggestions based on the text
the user has typed so far. The method receives a string (prefi x) containing the text the
user has entered and a CompletionResult object {result) that is used to display sugges-
tions to the user. The method loops through the rows of the addressesDataProvider,
retrieves the name from each row, checks whether the name begins with the lerters typed
so far and, if so, adds the name to result, Line 634 sets the cursor to the first row in the
data provider. Line 636 determines whether there are more rows in the data provider. If
s0, lines 639—643 retrieve the last name and first name from the current row and create a
String in the format last name, first name. Line 647 compares the lowercase versions of
name and prefix to determine whether the name starts with the characrers typed so far. If
so, the name is a march and line 649 adds it to result.

Recall that the data provider wraps a CachedRowSet object that contains a SQL query
which returns the rows in the database sorted by last name, then first name. This allows
us to stop iterating through the data provider once we reach a row whose name comes
alphabetically after the text entered by the user—names in the rows beyond this will all be
alphabetically greater and thus are not potential matches. If the name does not match the
text entered so far, line 655 tests whether the current name is alphabetically greater than
the prefix. If so, line 657 terminates the loop.

s Performance Tip 27.1

When using database columns to provide suggestions in an AutoComplete Text Fieid, sorting
the columns eliminates the need to check every row in the database for potential matches. This
significantly improves performance when dealing with a large database.

If the name is neither a match nor alphabetically greater than prefix, then line 662
moves the cursor to the next row in the data provider. If there is another row, the loop
iterates again, checking whether the name in the next row matches the prefix and should
be added to results.

Lines 665668 carch any exceptions generated while searching the database. Line 667
adds text to the suggestion box indicating the error to the user.

27.5 Google Maps Map Viewer Component

We now complete the AddressBook application by adding functionality to the Look Up
Button. When the user clicks this Button, the name in the AutoComplete Text Field is used

1IT6 Internet & World Wide Web How to program

to search the AddressBook database. We also add a Map Viewer Ajax-enabled JSF compo-
nent to the page to display a map of the area for the address. A Map Viewer uses the Google
Maps API web service to find and display maps. (The details of web services are covered
in Chaprer 28.) In this example, using the Google Maps API is analogous to making ord-
inary method calls on a Map Viewer object and its supporting bean in the page bean file.
When a contact is found, we display a map of the neighborhood with 2 Map Marker that
points to the location and indicates the contact’s name and address.

27.5.1 Obtaining a Google Maps APl Key

To use the Map Viewsr component, you must have an account with Google. Visit the site
https://wwi.google. com/accounts/ManageAccount to register for a free account if you
do not have one. Once you have logged in to your account, you must obtain a key to use
the Google Maps API from www.google. com/apis/maps. The key you receive will be spe-
cific to this web application and will limit the number of maps the application can display
per day. When you sign up for the key, you will be asked to enter the URL for the appli-
cation that will be using the Google Maps APL. If you are deploying the application only
on Sun Java System Application Server, enter http://Tocalhost: 8080/ as the URL.

After you accept Google's terms and conditions, you’ll be redirected to a page con-
taining your new Google Maps AP key. Save this key in a text file in a convenient location
for future reference.

27.5.2 Adding a Map Viewer Component to a Page

Now that you have a key to use the Google Maps AP, you are ready to complete the Add-
ressBook application. With AddressBook.jsp open in Design mode, add a Map Viewer
component named mapViewer below the nameAutoComplete. In the Properties window,
set the Map Viewer’s key property to the key you obtained for accessing the Google Maps
APL Set the rendered property to false so that the map will not be displayed when the
user has not yet searched for an address, Set the zocomLeve1 property to 1 (In) so the user
can see the street names on the map.

Drop a Map Marker (named mapMarker) from the BluePrints AJAX Support Beans sec-
tion of the Palette anywhere on the page. This component (which is not visible in Design
view) marks the contact’s location on the map. You must bind the marker to the map so
that the marker will display on the map. To do so, right click the Map Viewer in the Outline
tab and choose Property Bindings... to display the Property Bindings dialog. Sclect info
from the Select bindable property column of the dialog, then select mapMarker from the
Select binding target column. Click Apply, then Close.

Finally, drop a Geocoding Service Object (named geoCoder) from the BluePrints
AJAX Support Beans section of the Palette anywhere on the page. This object (which is not
visible in Dasign view) converts street addresses into laritudes and longitudes that the Map
Viewer component uses to display an appropriate map.

Adding a Data Provider to the Page

To complete this application, you need a second data provider to seatch the AddressBook
database based on the first and last name entered in the AutoComplete Text Field. We want
to create a new data source rather than reuse the existing one, because the query to search
for contacts is different from the query to display all the contacts. On the Runtime tab,

Ajax-Enabled javaServer™ Faces Web Applications n7r

expand the Databases node, the AddressBook database’s node and its Tables node to reveal
the Addresses table. Drag the Addresses tzble onto the page to create the new data pro-
vider. Select the new darta provider in the Navigator tab and change its id to addresses-
SearchbataProvider. In the Outline tab, a new node named addressesRowSetl has been
added to the SessionBeanl node. Change the id of addressesRowSet1 to addresses-
SearchRowSet.

Double click the addressesSearchRowSet node to edit the SQL statement for this
RowSet. Since we will use this row set to search the database for a given last and first name,
we need to add search parameters to the SELECT statement the RowSet will execute. To do
this, enter the text "= 7" in the Criteria column of both the first and last name rows in the
SQL statement editor table. The number 1 should appear in the Order column for first
name and 2 should appear for last name. Notice that the lines

WHERE 1HTP7.ADDRESSES . FIRSTNAME
AND JHTP7.ADDRESSES . LASTNAME

?
?

noH

have been added to the SQL statement. This indicates that the RowSet now executes a par-
ameterized SQL statement. The parameters can be set programmatically, with the first
name as the first parameter and the last name as the second.

27.5.3 JSP File with a Map Viewer Component

Figure 27.14 presents the JSP file for the completed address-book application. It is nearly
identical to the JSP for the previous two versions of this application. The new feature is
the Map Viewer component (and its supporting components} used to display 2 map with
the contact’s location. We discuss only the new elements of this file. [Noze: This code will
not run until you have specified your own Google Maps key in lines 165-166. You can
paste your key into the Map Viewer component’s key property in the Properties window.}

Lines 162-168 define the mapViewer component that displays a map of the area sur-
rounding the address. The component’s center attribute is bound to the page bean prop-
erty mapViewer_center. This property is manipulated in the page bean file to center the
map on the desired address.

Fig. 27.14 | AddressBook JSP with a Map Viewer component. (Part | of 5.)

1178 internet & World Wide Web How to program

S s TRAA o S b P b LB TR % Gl

Fig. 27.14 | AddressBook JSP with a Map Viewer component. (Part 2 of 5.)

Ajax-Enabled JavaServer™ Faces Web Applications 1179

Fig. 27.14 | AddressBook JSP with a Map Viewer component. (Part 3 of 5.)

1180 Internet & World Wide Web How to program

Fig. 27.14 | AddressBook JSP with 2 Map Viewer component. (Part 4 of 5.)

Ajax-Enabled javaServer™ Faces Web Applications 1181

Fig. 27.14 | AddressBook |SP with a Map Viewer component. (Part 5 of 5.)

The Look Up Button’s action attribute is now bound to method tookUpButton_action
in the page bean (lines 157-158). This action handler searches the AddressBook database
for the name entered in the AutoComplete Text Field and displays the contact’s name and
address on a map of the contact’s location. We discuss this method in Section 27.5.4.

27.5.4 Page Bean That Displays a Map in the Map Viewer Component

Figure 27.15 presents the page bean for the completed AddressBook application. Most of
this file is identical to the page beans for the first two versions of this application. We dis-
cuss only the new action-handler method, TookUpButton_action.

Fig. 27.15 | Page bean that gets a map to display in the Map Viewer component. (Part | of 3.)

1182 Internet & World Wide Web How to program

Fig. 27.15 | Page bean that gets a map to display in the Map Viewer component. (Part 2 of 3.)

Ajax-Enabled JavaServer™ Faces Web Applications 1183

Fig. 27.15 | Page bean that gets a map to display in the Map Viewer component. (Part 3 of 3.)

1184 Internet & World Wide Web How to program

Method TookUpButton_action (lines 744-802) is invoked when the user clicks the
Look Up button in the lower form on the page. Lines 747-750 retrieve the name from the
AutoComplete Text Field and split it into Strings for the first and last name. Lines 755-
758 obtain the addressesSearchDataProvider’s CachedRowSet, then usc its method
setObject to set the parameters for the query to the first and last name. The setObject
method replaces a parameter in the SQL query with a specified string. Line 759 refreshes
the data provider, which executes the wrapped RowSet’s query with the new parameters.
The result set now contains only rows that match the first and last name from the Auto-
Complete Text Fleld. Lines 760767 fetch the street address, city, state and zip code for this
contact from the database. Note that in this example, we assume there are not multipk
entries in the address book for the same first and last name, as we fetch only the address
information for the first row in the data provider. Any additional rows that match the firse
and last name are ignored.

Lines 770-771 format the address as a String for use with the Google Maps AlL.
Line 774 calls the Geocoding Service Object’s gecCode method with the address as an argu-
ment. This method returns an array of GeoPoint objects representing locations rthar march
the address parameter. GeoPoint objects provide the latitude and longitude of a given loca-
tion. We supply a complete address with a streer, city, state and zip code as an argument
10 geoCode, so the returned array will contain just one GeoPoint object. Line 777 deter-
mines whether the array of GeoPoi nt objects is nu11. If so, the address could not be found,
and lines 779-781 display a message in the Message Group informing the user of the
search error, hide the Map Viewer and return nu1 to terminate the processing.

Lines 785-786 set the latitude and longitude of the Map Viewer's center to those of
the GeoPoint that represents the selected address. Lines 789-792 set the Map Marker's lat-
itude and longitude, and set the text to display on the marker. Line 794 displays the recen-
tered map containing the Map Marker that indicates the contact’s location.

Lines 796-799 catch any exceptions generated throughout the method body and dis-
play an error message in the Message Group. If the user has simply selected a name tfrom
the list of selections in the AutoComplete Text Field, there will be no errors in scarching the
database, as the name is guaranteed to be in the proper lest name, first name format and
included in the AddressBook database. We did not include any special error-handling code
for cases in which the user types a name that cannot be found in the AddressBook or for
improperly formatted names.

27.'6 Web Resources

Our Java Resource Centers focus on the enormous amount of free Java content available
online. We currently provide six Java-related Resource Centers:

www.deitel.com/java/

www . deitel.com/JavaCertification/
www. deitel.com/JavaDesignPatterns/
www.deitel.com/JavaEES/
www.deitel.com/JavaFx/
www.deitel.com/JavaSE6Mustang/

You can view our complete list of Resource Centers at

www . deitel. com/ResourceCenters . html

Ajax-Enabled JavaSeiver™ Faces Web Applications 1183

Summary
Section 27.2 Accessing Darabases in Web Applwamm

» Many web applications access databases to store and retrieve persistent dara. In this section, we
build a web application tha uses a Java DB darabase to store' contacts in the addreas bwk and
dbphymnmmfmd&caddmbmkouamhw

* "The Table component formars and displays data from databas: tables.
* Change the Table's titTe property to specify the text displayed at the top of the Table.

& To create a davabase, select Tools > Java OB Database > Craste Java DB Databess. ... Na:t,eniex

thenamc ofthedztabaseto crcateamemmnemdapassword é\endickﬂl(mcmmthedma»

. Y«mm uscdtc&mﬁnn:ab(mtberig!nefthcm:mdmumb;)tocmxetabiésméw
execmcSQLstamncmsthaxpopulatethedambﬁcwidadm. Todow,dlckthcmmb ;
and expand the Detsbeses node. .

* - Netbeans must be connected to the database to execute SQL starements. If msnot,thewon 5’ o
appears next to the database’s .In lhis case, ﬂgh: click the icon mdchckOorm OMI:
conngcted, the icon changes o :

. ToaddamblcwrhcdatabascusmgSQL cxpmddxdmmsm ﬂghl:dk:krhc!'mmée ‘_:_3 e

and select Exacute Commahd... to open a SOL Commard editor in Netbeans. Paste the SQLoode - -
into the SOL Command editor in Netbeans. Then, highlxghtaﬂd’t:SQLcommnés. ngﬁtd}da
inside the 8QL Command editor and select Aun Selection. - S
+ To configure a Teble component to display 2 table’s data, s:mpiydmgdzcéaubasc table fom
: 'mmbanddmpltontthﬁlmpommmm:ethebimiing.
~ + To select specific columns: to display, right click the Table component mmm_
_displaytﬁe“bb&dmlogmnmmngdwlnstof:hcc:olumnﬂnthcdaﬁbmmble.m__, o
undcrthcmhadmgwuﬁbednsplayod intthabiu Tammoveacdunm.s&eaamﬂ&&t o
. the <buon. B

. Bydcﬁuit ﬂwMusesthedazabﬂsctablcscolumn mmesmaﬂuppemmmhmdings. i :_'
_ To'change these headings, select a column and edit its header Text property in :hcnwm :

_dow. To select a- column; click the coluran’s niame in the Design mode.

» Clicking the checkbox next to the table’s paginationControts property in thcmwm&aw i

ccmﬁguru this Table for automatic pagination. This adds butrons to the botttit of the Table for |
maving forward and backward between groups of contacts. You may use the Table LMdialng

mmbwseim{henmr‘b"&fmmd‘sﬂ@aumc Tovicwzhuub fﬁghtlﬁmk!he

_‘?ﬁu select Table Layout..., then-click the Opions tab.
*iVhtuaifotmsaﬂowsubsezsofafarmsmputcomponemsmbesubmimdm&wm&mg'

the internalVirtualform property prevents the pagination control buttons on dhe Table from

submitting other form components every time the user \mhes ro view the Bext group of recorés
' from the database.

* A CachedRowSetDataProvider provides a miiableuwset dm can be bound ©0a ';m mm@ e L

nent o display the RowSet’s data.

. Evcrymw inaCachedeSetData?m?derhxx{sownkey mcthod W&Rm, whmﬁad&a
new row 1o the CachedRowSet, mumsdzekcyfbré;enewww

» Method comei tChanges f class Ca*hedeSetDataProwder appties any changes to rhc Cached-
RowSet to the databage.

* CachedRowSetDataProvider method refresh re-executes the wrapped. Cacm L] 5@«

L Seotion 274Amocompiete Text Fieid and. Vzmad rms
= L * The AutoCompiate Text Field provides a llst of suggest;ons_ from a data sptirce. (s

1186 Internet & World Wide Web How to program -

Section 27.3 Ajax-Enabled JSF Components e
¢ 'The Java BluePrints Ajax component library provides Ajax-enabledJSF components

* To use the Java Bluelrints Ajax-enabled components in Netbcans you must dawnioa,d and
. import them: The IDE provides a wizard for installing this group of somponents (Inwroesaccess
~is required). To access it, choose Tools > Lipdate Center 10 display the Update. Genter Wizard: dialog,

Click Next > to search for available updates. In the Avaliable Updates: and New Modules arca Ofthe
dialog, locate and select BiusPrints AJAX Components, ‘then dlick the Add > Butcon 6 2dd them
“ to the list of iterns you’d like 1o install. Click Next> and follow.the prompts t6'accept the terms

-, of use.and download the components. When the dawnioad wmplms clldt Nﬂx!:», then click

. Einigh, Click OK to:restart the IDE. .

* You must import the components into the Palette. Sclea Toob > Gonwnm Lh‘ltyw

. then click Import.... Click Browse... in the Component Library Manager dialog that appears. Sel-
ect:the ui.complib file and click Open. Click OK to import both:.che BiuePrirts AJAX Compo-
nents and the BluePrints AJAX Support Beans. Close the Compmuhmy Mmapar o return

cto the IDE.

«.To sec the new companents in the Palette, you must add the wmmcomm llb:ary
to'your visual web application. To do so, make sure your application’s: node is expanded in the

. Projacts wab. Right click the Component Libraries node and sclect Add Gomponent Librry. In the
‘mcummw dla.log box, select thc BfuoPﬂnﬁa AXZ" ' d -k:hck Md

uch 252 dabase
‘forwebscmoc)astheus..rwpcs R
* Virtual forms are used when you would likea Button to: submit a subset of thf: ; 'e s input'ﬁcids
40 the server. } '
* Vircual forms enable you to dlsplay mulsiple forms on the same pagt Th:y alinw you w0 spccxfy
a submirter and one or more participants for each form. When the vircual form’s submitver com-
',ponent is dicked, only the values of its participant components will be su.bmmed to the server.

¢ Toadd virtual formsto 2 page, right click the submitver cormponerit on the form and choose Con-

figure Virtual Forms... from the pop-up menu to display the Configure Virtual Forms dialog. Click

"-New to add a virtual form, then click in the Nama column and specify the new form’s name. Dou-

ble dlick the Submit column and change the option to Y#e to indicate thar this button should be

 iised to submit the virtual form. Click OK to ¢ i« the dialog, Next, sclect all the input companents

. that will participate in the virtual form. Right click one of the selected companents and choose

Configurs Virtual Forms.... In the Participate column of the appropriate virtual form, change the

“ option 10.Yes to mdlc.m that the values in these components should be submlttcd to the server
* when'the form is submitted,

. "T'o see the virtual forms in the Design mode, click the Show Virtual Fonns bumm { ?) at the top
of the Visual Designer panel to display 2 legend of the virtual forms on the page.

. An AutoCompiete Text Figid component’s completionMethod artribure is bound to a page bean’s
complete event handler. To create this method, right click the AutoCornplete Text Flekl compo-
nenr in Design view and select Edit Event Handler > complate.

* The complete event handler is invoked afrer every kcys:rokc in an Aszomptm Text Field 10
update the list of suggestions based on the text the user has ryped so far. The methiod reccives a
string containing the text the user has entered and a CompTen onResult’ object that is uscd £0 d:s-
play suggestions to the user. :

Rjax-EmbkdijafverT“ Faces Web Applications :zmz-'_w.} _

Section 27.5 Googk Alaps Map Viewr Compmmzt : @

* A Map Viewer Ajax-enabled }SF ‘component uses the Google Maps AP web service 1o ﬁnd, e
digplay maps. A Map Marker points to a location on 4 map. "

* To use the Map Viewsr component; you must have an account with Googi Regxster for a free

. acoount: at-https: //www.9oogle.com/accounts ManageAccount. You must obtain a key to use

the Google Maps APT From www.google .com/apis/maps The key you receive will be specific to
your.wehi application and will limic the number of maps the application can display per day.
: thn you sagn up ﬂ}r the kfy you wx!] be askcd to-enter the URL for the apphmuon that will
¢ Toused mpm sctm k&y pmpen“y totheGoogk Maps AP] key your obtained.

* A Map Marker (from the BlusPrints AJAX Support Beans section of the Paletts) marks a location
‘on-a map. You must bind the marker o the map ‘so that the marker will display on the map.
To do so, right dick the Map Viewer in Design modec component and choose Property Bind-
ings... to display the Property Bindings dialog, Select infa from the Select bindable propenty col-
umn of the dialog, then sclect thc Map Matkor from the Select binding target column. Click

-Apply, then Closa. e

* A Geocoding Service Object (fmm the BIusPrinm A.IAX Support Beans section of the Palatte) con-
verts street addresses into 1at1*udes and]ongntudes thar the Map Viewer component uses to dis~

. play an appmpnatc map. L

"« The W Viewer's center’ attnbute "is'hound o thc page bean property mapViewer_ centar. Th:s L

property is mampulated in the page be _:ﬁlc 10 center the map on the desired address, B

e The Gmmmmoa 3 geo&:ode meéthod receives an address as an argument and Teturns

an array of GeoPoint objects representing locations that match the address parameter. GeoPoint
'_ob;ects provtde thc ianmdz and’ lm;gtudc of a ngcn locauon

- JSF elemenr

- - Map Marker JSE component
_ : L .:; 7 “Map Viewer JSF component
bmdmg a]SF Table: o a.ck&hase tﬂﬁe © | ‘Message Group JSF component S
 bundled database server 0 0 v © panicipant component in a virtual form:
Button JSF cotnponent "Popup Calendar JSF component
 Buy Now. Button JSF componient . primary property of a JSF Button
CachedRowSet ingerface . . - . ‘Progress Bar JSF component
CachedﬂouSgtﬂata?;wider dass . _Rating JSF component
commitChanges method of ;]assCachedRowSet- refresh method of
DataProvider . _ : N classCachedRowSetDataProvider
dawa provider - - -reset.property of a JSF Button
event-progessing life cycie . Rich Textarea Editor JSF component
Gedcoding Service Select Value Text Field]SF component.
geoCode method of a Geacoding Servics Object submitter component in a virtual form
Google Maps Table JSF component
Google Maps API virtual form
Java BluePrints webuijsf:staticText JSF element
Java BluePrints Ajax component library webuijsf:zable JSF element
Java DB webuijsf:tableRowGroup JSF element

JavaServer Faces (JSF)

© 188 . Intemet & World Wide Web How to progrm

& ‘ TE.I “State whether each of the following is true or false. If false, exphain why. '

.+ "2} The Table JSF component allows you to lay out other componetits and text in tabular
) ":‘:'fﬁ 3 : : . . : oy o
S0 by Vireual forms allow multiple forms, each with its own submitter component and par-
| ticipant components, o be displayed on the same web page. ' e
oo gy ACachedRowSetDataProvider is stored in the SessionBean and executes SQ. queries to
L0907 provide Table components with demtodisplay. . - v -0 0 o
. d)" The complete event handler for an AutoGornpiete Text Field is called afver every keyseroke
. in the text field 1o provide a list of suggestions based on what has already been typed.
) A dasa provider sutomatically re-executes its SQL command to provide updated daca-
To recenter 2 Map Viewsr componerit, you miust set the longitude and latitude of the
‘Fill in the blanks i each of the following statements, - . . o
2) Method - ofclass . updates a database to reflect any changes made
by A(n)w_,isasuppomngmpédcm_us:d;ﬁuai;;!z_tcaddrmsq;inmla_;imdumd
" Jongitudes for display in a Map Viewsr component. . o
" ¢y Avireual form specifies that ceruain JSF componentsare . whose data will be
" ubmirced when the submiter component is clicked. e

& ‘Ajox components o JS mich as the AutoGomplete TextFied 2nd Map Viewr are pro-

D 213 (Guestbook Application) Create a JSF web page that allows users to sign and view a guest-
. book. Use the Cyestbook database (provided in the examples directory for this chapter) to store
©" guestbook entries. The Guestbook database has a single table, Hessages, which has four columns:
. date, name, email and message, The database already contains a few sample entries. On the web
page, provide Text Fiekds for the user's name and ¢-mail address and 2 Text Area for the message. Add
a Submit Button and a Table component and configure the Tatle so display guestbook entrics, Use
the Submit Button’s action-handler method 1o insert a new row containing the user’s input and

- today’s date into the Guestbook darabase. - . , o o
214 (Map Search Application) Create a JSF web page that allows users to obrain.a map of any
addvess, Recall that 2 search for a location using the Google Maps API retuens an atray of
. GeoPoint objects. Search for locations a user enters in a Text Fiokd and display 2 map of the first
" location in the resulting GeoPoint array. To handle multiple search results, display all results in 2
' Ligtwox’ component. You can obtain 3 string representation of each result by inveking method
" xoString on a GeoPoint object. Add a Butten thac allows users to select a result from the Listhox
+ ‘and.displays a map for that result with 2 Map Marker showing the location on the map. Finally,
use a2 Massage Group to display messages regarding search errors. In case of an error; and when

" the page toads for the first time, recentet the map on a default focation of your choosing,

